3.473 \(\int (a+a \cos (c+d x))^3 (A+B \cos (c+d x)) \sec ^{\frac{3}{2}}(c+d x) \, dx\)

Optimal. Leaf size=211 \[ \frac{4 a^3 (5 A-6 B) \sin (c+d x) \sqrt{\sec (c+d x)}}{15 d}+\frac{2 (5 A+9 B) \sin (c+d x) \left (a^3 \sec (c+d x)+a^3\right )}{15 d \sqrt{\sec (c+d x)}}+\frac{4 a^3 (5 A+3 B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}+\frac{4 a^3 (5 A+9 B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d}+\frac{2 a B \sin (c+d x) (a \sec (c+d x)+a)^2}{5 d \sec ^{\frac{3}{2}}(c+d x)} \]

[Out]

(4*a^3*(5*A + 9*B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(5*d) + (4*a^3*(5*A + 3*B)
*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (4*a^3*(5*A - 6*B)*Sqrt[Sec[c + d*x]
]*Sin[c + d*x])/(15*d) + (2*a*B*(a + a*Sec[c + d*x])^2*Sin[c + d*x])/(5*d*Sec[c + d*x]^(3/2)) + (2*(5*A + 9*B)
*(a^3 + a^3*Sec[c + d*x])*Sin[c + d*x])/(15*d*Sqrt[Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.494971, antiderivative size = 211, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 7, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.212, Rules used = {2960, 4017, 3997, 3787, 3771, 2639, 2641} \[ \frac{4 a^3 (5 A-6 B) \sin (c+d x) \sqrt{\sec (c+d x)}}{15 d}+\frac{2 (5 A+9 B) \sin (c+d x) \left (a^3 \sec (c+d x)+a^3\right )}{15 d \sqrt{\sec (c+d x)}}+\frac{4 a^3 (5 A+3 B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}+\frac{4 a^3 (5 A+9 B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d}+\frac{2 a B \sin (c+d x) (a \sec (c+d x)+a)^2}{5 d \sec ^{\frac{3}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Cos[c + d*x])^3*(A + B*Cos[c + d*x])*Sec[c + d*x]^(3/2),x]

[Out]

(4*a^3*(5*A + 9*B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(5*d) + (4*a^3*(5*A + 3*B)
*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (4*a^3*(5*A - 6*B)*Sqrt[Sec[c + d*x]
]*Sin[c + d*x])/(15*d) + (2*a*B*(a + a*Sec[c + d*x])^2*Sin[c + d*x])/(5*d*Sec[c + d*x]^(3/2)) + (2*(5*A + 9*B)
*(a^3 + a^3*Sec[c + d*x])*Sin[c + d*x])/(15*d*Sqrt[Sec[c + d*x]])

Rule 2960

Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[g^(m + n), Int[(g*Csc[e + f*x])^(p - m - n)*(b + a*Csc[e + f*x])^m*(
d + c*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[p] && I
ntegerQ[m] && IntegerQ[n]

Rule 4017

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(a*A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^n)/(f*n), x]
- Dist[b/(a*d*n), Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*(m - n - 1) - b*B*n - (a*
B*n + A*b*(m + n))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2
 - b^2, 0] && GtQ[m, 1/2] && LtQ[n, -1]

Rule 3997

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))*(csc[(e_.) + (f_.)*(x_)]*(B_.
) + (A_)), x_Symbol] :> -Simp[(b*B*Cot[e + f*x]*(d*Csc[e + f*x])^n)/(f*(n + 1)), x] + Dist[1/(n + 1), Int[(d*C
sc[e + f*x])^n*Simp[A*a*(n + 1) + B*b*n + (A*b + B*a)*(n + 1)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f
, A, B}, x] && NeQ[A*b - a*B, 0] &&  !LeQ[n, -1]

Rule 3787

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int (a+a \cos (c+d x))^3 (A+B \cos (c+d x)) \sec ^{\frac{3}{2}}(c+d x) \, dx &=\int \frac{(a+a \sec (c+d x))^3 (B+A \sec (c+d x))}{\sec ^{\frac{5}{2}}(c+d x)} \, dx\\ &=\frac{2 a B (a+a \sec (c+d x))^2 \sin (c+d x)}{5 d \sec ^{\frac{3}{2}}(c+d x)}+\frac{2}{5} \int \frac{(a+a \sec (c+d x))^2 \left (\frac{1}{2} a (5 A+9 B)+\frac{1}{2} a (5 A-B) \sec (c+d x)\right )}{\sec ^{\frac{3}{2}}(c+d x)} \, dx\\ &=\frac{2 a B (a+a \sec (c+d x))^2 \sin (c+d x)}{5 d \sec ^{\frac{3}{2}}(c+d x)}+\frac{2 (5 A+9 B) \left (a^3+a^3 \sec (c+d x)\right ) \sin (c+d x)}{15 d \sqrt{\sec (c+d x)}}+\frac{4}{15} \int \frac{(a+a \sec (c+d x)) \left (\frac{1}{2} a^2 (20 A+21 B)+\frac{1}{2} a^2 (5 A-6 B) \sec (c+d x)\right )}{\sqrt{\sec (c+d x)}} \, dx\\ &=\frac{4 a^3 (5 A-6 B) \sqrt{\sec (c+d x)} \sin (c+d x)}{15 d}+\frac{2 a B (a+a \sec (c+d x))^2 \sin (c+d x)}{5 d \sec ^{\frac{3}{2}}(c+d x)}+\frac{2 (5 A+9 B) \left (a^3+a^3 \sec (c+d x)\right ) \sin (c+d x)}{15 d \sqrt{\sec (c+d x)}}+\frac{8}{15} \int \frac{\frac{3}{4} a^3 (5 A+9 B)+\frac{5}{4} a^3 (5 A+3 B) \sec (c+d x)}{\sqrt{\sec (c+d x)}} \, dx\\ &=\frac{4 a^3 (5 A-6 B) \sqrt{\sec (c+d x)} \sin (c+d x)}{15 d}+\frac{2 a B (a+a \sec (c+d x))^2 \sin (c+d x)}{5 d \sec ^{\frac{3}{2}}(c+d x)}+\frac{2 (5 A+9 B) \left (a^3+a^3 \sec (c+d x)\right ) \sin (c+d x)}{15 d \sqrt{\sec (c+d x)}}+\frac{1}{3} \left (2 a^3 (5 A+3 B)\right ) \int \sqrt{\sec (c+d x)} \, dx+\frac{1}{5} \left (2 a^3 (5 A+9 B)\right ) \int \frac{1}{\sqrt{\sec (c+d x)}} \, dx\\ &=\frac{4 a^3 (5 A-6 B) \sqrt{\sec (c+d x)} \sin (c+d x)}{15 d}+\frac{2 a B (a+a \sec (c+d x))^2 \sin (c+d x)}{5 d \sec ^{\frac{3}{2}}(c+d x)}+\frac{2 (5 A+9 B) \left (a^3+a^3 \sec (c+d x)\right ) \sin (c+d x)}{15 d \sqrt{\sec (c+d x)}}+\frac{1}{3} \left (2 a^3 (5 A+3 B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx+\frac{1}{5} \left (2 a^3 (5 A+9 B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \, dx\\ &=\frac{4 a^3 (5 A+9 B) \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{5 d}+\frac{4 a^3 (5 A+3 B) \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{3 d}+\frac{4 a^3 (5 A-6 B) \sqrt{\sec (c+d x)} \sin (c+d x)}{15 d}+\frac{2 a B (a+a \sec (c+d x))^2 \sin (c+d x)}{5 d \sec ^{\frac{3}{2}}(c+d x)}+\frac{2 (5 A+9 B) \left (a^3+a^3 \sec (c+d x)\right ) \sin (c+d x)}{15 d \sqrt{\sec (c+d x)}}\\ \end{align*}

Mathematica [C]  time = 1.59662, size = 207, normalized size = 0.98 \[ \frac{a^3 e^{-i d x} \sqrt{\sec (c+d x)} (\cos (d x)+i \sin (d x)) \left (-8 i (5 A+9 B) e^{i (c+d x)} \sqrt{1+e^{2 i (c+d x)}} \, _2F_1\left (\frac{1}{2},\frac{3}{4};\frac{7}{4};-e^{2 i (c+d x)}\right )+40 (5 A+3 B) \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )+60 A \sin (c+d x)+10 A \sin (2 (c+d x))+120 i A \cos (c+d x)+3 B \sin (c+d x)+30 B \sin (2 (c+d x))+3 B \sin (3 (c+d x))+216 i B \cos (c+d x)\right )}{30 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Cos[c + d*x])^3*(A + B*Cos[c + d*x])*Sec[c + d*x]^(3/2),x]

[Out]

(a^3*Sqrt[Sec[c + d*x]]*(Cos[d*x] + I*Sin[d*x])*((120*I)*A*Cos[c + d*x] + (216*I)*B*Cos[c + d*x] + 40*(5*A + 3
*B)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] - (8*I)*(5*A + 9*B)*E^(I*(c + d*x))*Sqrt[1 + E^((2*I)*(c + d*
x))]*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))] + 60*A*Sin[c + d*x] + 3*B*Sin[c + d*x] + 10*A*Sin[
2*(c + d*x)] + 30*B*Sin[2*(c + d*x)] + 3*B*Sin[3*(c + d*x)]))/(30*d*E^(I*d*x))

________________________________________________________________________________________

Maple [B]  time = 3.493, size = 519, normalized size = 2.5 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+cos(d*x+c)*a)^3*(A+B*cos(d*x+c))*sec(d*x+c)^(3/2),x)

[Out]

-4/15*a^3*(-12*B*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6+
2*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(5*A+21*B)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)-2*(-
2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(10*A+9*B)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+25*A*(si
n(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(-2*sin(1/2*d
*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)-15*A*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x
+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+15*B*(sin(1/2*d*x+1/2*
c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(-2*sin(1/2*d*x+1/2*c)^4+si
n(1/2*d*x+1/2*c)^2)^(1/2)-27*B*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/
2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*
x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (B \cos \left (d x + c\right ) + A\right )}{\left (a \cos \left (d x + c\right ) + a\right )}^{3} \sec \left (d x + c\right )^{\frac{3}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^3*(A+B*cos(d*x+c))*sec(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)*(a*cos(d*x + c) + a)^3*sec(d*x + c)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (B a^{3} \cos \left (d x + c\right )^{4} +{\left (A + 3 \, B\right )} a^{3} \cos \left (d x + c\right )^{3} + 3 \,{\left (A + B\right )} a^{3} \cos \left (d x + c\right )^{2} +{\left (3 \, A + B\right )} a^{3} \cos \left (d x + c\right ) + A a^{3}\right )} \sec \left (d x + c\right )^{\frac{3}{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^3*(A+B*cos(d*x+c))*sec(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

integral((B*a^3*cos(d*x + c)^4 + (A + 3*B)*a^3*cos(d*x + c)^3 + 3*(A + B)*a^3*cos(d*x + c)^2 + (3*A + B)*a^3*c
os(d*x + c) + A*a^3)*sec(d*x + c)^(3/2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))**3*(A+B*cos(d*x+c))*sec(d*x+c)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (B \cos \left (d x + c\right ) + A\right )}{\left (a \cos \left (d x + c\right ) + a\right )}^{3} \sec \left (d x + c\right )^{\frac{3}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^3*(A+B*cos(d*x+c))*sec(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*(a*cos(d*x + c) + a)^3*sec(d*x + c)^(3/2), x)